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Abstract 

The pseudo-random generators based on LFSR are widely used in stream cipher 
cryptosystems. In this paper, we propose a new family of pseudo-random 
generators based on LFSR: The family of the “ generators-α ”. We named them   

,generators-α  because to define these generators, we use a primitive element 
α  of the multiplicative group of a finite field. We show that these generators 
produce sequences of very large period and we find that they have very large 
linear complexity. Moreover, we find that they resist correlation attacks and 
algebraic attacks. 
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1. Introduction 

A linear feedback shift register (LFSR) allows the production of 
linear recurring sequences [5] having significant statistical properties for 
their application in cryptography. It is sufficient to exchange the initial 
state of the generator to produce the same output sequence on each side 
of the communication. However, these properties are not good enough to 
directly use LFSR for security goals. Indeed, the algorithm of Berlekamp-
Massey ([1], [6]) makes possible to find all the initial parameters of LFSR 
from the knowledge of a small number of successive bits of an output 
sequence. In order to be able to use LFSR anyway, we have two methods 
which mask their linear structure by adding a component. These methods 
consist in either combining several LFSRs or to filter only one LFSR by a 
nonlinear function. For the combination method, one distinguishes: 
combination of generators by a nonlinear boolean function, summation 
generators [10], and generators by clock controlling (see [4], for example). 
Many attacks were proposed against these generators, in particular, 
correlation [12] and algebraic [2] attacks. 

In this paper, we propose a new family of generators obtained by 
combination which we call the family of the α -generators. After a short 
recall on the LFSR, we recall some concepts on the finite fields ,2mF  

which will be useful for our construction. Then we give the description of 
an α -generator over a finite field ,2mF  then we make a security analysis 

of these generators before concluding. 

2. Linear Feedback Shift Register  
and m-Sequences 

In this section, we recall briefly the description of the LFSR over the 
binary field .2F  A linear feedback shift register (LFSR) consists in a 

collection of flip-flops (single-bit memories) set up in a linear fashion and 
clocked. The length k of the LFSR is determined by the number of flip-
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flops. The initial value of the register is called seed. At each cycle of the 
circuit clock, the LFSR outputs a bit .iu  The output sequence 

( ) N∈= iiuU  of the LFSR is completely determined by the seed and 

satisfies a relation of the form 

,2mod
1

nkin

k

n
ki ufu −+

=
+ ∑=   (1) 

where the sequence ( )kff ,,1 …  is a binary vector with .1=kf  Moreover, 

U is a periodic sequence of period to most equal to .12 −k  If its period is 

equal to ,12 −k  then it is called a maximal length sequence, m-sequence 

for short, and the LFSR is known as maximal (see [5]). 

The sequence ( )kff ,,1 …  is related to the feedback polynomial 

defined by ( ) .1 1
k

kxfxfxf ⊕⊕⊕= "  To produce a maximal LFSR 

which produces m-sequences, we must choose a primitive feedback 
polynomial (see [5, 8]). The linear complexity of a periodic sequence is the 
length of smallest LFSR being able to generate it. 

The following result is an interesting property of the m-sequences: 

Proposition 1 ([5, 8]). If U is a sequence generated by a maximal 

LFSR of length k, then in every period of U, zeros occur 12 1 −−k  times 

and ones occur 12 −k  times. 

The m-sequences have many significant properties. However, one 
should not directly use such a sequence for cryptographic applications. 
One can retrieve its secret parameters (feedback polynomial and initial 
state of registers) thanks its linearity. Indeed, thanks the algorithm of 
Berlekamp-Massey [5], if a sequence has a small linear complexity k, 
then the knowledge of 2k consecutive bits of the sequence makes possible 

the discovery of the LFSR parameters of the length k, with only ( )2kO  

binary operations. 
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Hence, this leads the idea to combine several distinct LFSRs or to 
filter only one LFSR by a nonlinear function, in order to produce 
sequences having a sufficient linear complexity to be out of range of the 
Berlekamp-Massey algorithm. In the family of the generator 
combinations, one distinguishes: combination of generators through a 
nonlinear boolean function, combination of generators with a function 
with memory and the generators with clock control. All generators with 
the clock control have an equivalent generator among the generators 
combined by a nonlinear boolean function. Hence, they are identical in 
terms of security. However, we will present these generators and propose, 
in the fourth section, a new approach to combine LFSRs. 

2.1. Combination generator with nonlinear boolean function 

A boolean function of n variables is a function with n binary inputs 
and one binary output. 

A combination generator with nonlinear boolean function is a 
nonlinear boolean function f of n variables, which takes the outputs of 
parallel LFSRs as input. The combination generator outputs iy  

computed from each LFSR output as shown in Figure 1(a), i.e., 

( ),,, ,,1 inii xxfy …=  

where ( ) ,1,, nix ji ≤≤  is the output sequence of th-i  LFSR. Let iL  be 

the length of the th-i  LFSR. The period and linear complexity of the 

output sequence ( )iiyY =  of combination generator with nonlinear 

boolean function are as follows: 

Theorem 1 ([5]). The linear complexity of Y is ( )nLLf ,,1 …  

evaluated over .Z  The period of Y is equal to ( ).,,lcm 1 nLL …  
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2.2. Summation generators (Rueppel’s generator) 

Rueppel’s summation generator [10] (see Figure 1(b)) is composed of 
n maximal LFSRs and a memory m of ( ( ) )1log2 −n  bits. Let 

( ) ,1,, nix ji ≤≤  be the output sequence of LFSR i. The summation 

generator output sequence ( ) 0≥= iiyY  is defined by the following 

relation: 







++++=

++++=
≥

−

−

,2div

,2mod
,0for

1,,2,1

1,,2,1

jjnjjj

jjnjjj

mxxxm

mxxxy
j

"

"
 (2) 

where “mod 2” and “div 2” denote, respectively, the remainder and 
quotient of integer division by 2. 

The important property of the summation generator output sequence 
Y is the following result: 

Theorem 2 ([10]). The period of the sequence Y is ( )12lcm1 −≤≤
iL

ni  

and its linear complexity is approximately equal to this value. 
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(a) Combination with nonlinear boolean function. 

 

(b) Summation generator. 

Figure 1. Classical methods of combination of LFSR. 
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3. Finite Field m2F  

Let m be a positive integer and m2F  be the finite field with order .2m  

Let ( ) 0
1

1 fxfxxf m
m

m ⊕⊕⊕= −
− "  be a primitive polynomial over 2F  

and let α  be a root of ( ),xf  i.e., ( ) .0=αf  We have the following 

isomorphism: 

( ) [ ] ( )( ),222 xfxm FFF ≈α=  

to represent .2mF  

To construct this structure, we need to choose α  as a primitive 

element of the multiplicative group of ,2mF  i.e., ,112 =α −m
 where 

12 −m  is the smallest positive integer, which satisfies this identity. In 

particular, every element a of m2F  satisfies the relation .112 =−m
a  If 

,0≠a  then ka α=  for some integer ( ).121 −≤≤ mkk  

Moreover, m2F  is a vector space of dimension m over ,2F  whose the 

polynomial basis is ( ).,,,,1 12 −ααα m…  Any element a of m2F  can be 

written uniquely in the form 

.where, 201
1

1 F∈⊕α⊕⊕α= −
− i

m
m aaaaa "  

This form is called polynomial representation. We can also represent the 
same element a in binary notation by { }.021 aaaa mm …−−=  

For { } ( ) 02021 lsb, aaaaaa mmm =∈= −− F…  and ( ) 1msb −= maa  

are, respectively, the least significant bit and most significant bit of a. 

We will now describe the addition in m2F  and the multiplication by 

.α  These two operations are carried out in a very simple way. Indeed, the 
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addition (also denoted by ⊕ ) of two elements of m2F  corresponds to an 

XOR between the coefficients in the polynomial representation of the two 
terms. Clearly, the addition corresponds with the simple bitwise XOR at 
the m-bit level. 

The multiplication of ma 2F∈  by α  corresponds to a simple left shift 

by one bit of its binary notation, followed by an XOR with the fixed mask 
{ },021 fff mm …−−  if ( ) .1msb =a  

4. The Generators-α  

Let 2≥m  be an integer and m2F  be the finite field of order .2m  Let 

us agree that α  is a primitive element of .2mF  

In the rest of paper, n denotes the number of LFSRs (integer greater 
than 1) and we choose always maximal LFSRs (LFSRs which produce     
m-sequences). 

Definition 1. An α -generator over m2F  is composed of n maximal 

LFSRs and ( )1+m -bit memory divided in a binary memory c and an      

m-bit memory .2mF∈β  Let 1−α=γ m  and ( ) 0, ≥iikk xx  be the output 

sequence of the th-k  LFSR ( ).1 nk ≤≤  Then, the output sequence 

( ) 0≥= iiyY  of an α -generator is given by 

( )

( )












γ⊕β=

γ⊕β=

αβ=β

≥

−

−

+++
−

,lsb

,msb

,

,0for

1

1

,,2,1
1

i

i

inii

c
ii

c
ii

xxx
ii

y

ci

"

 (3) 

with initializations of memory state: { }1,01 ∈−c  and 1−β  a nonzero 

power of ( ,1
lα=βα −  where { }).22,,1 −∈ ml …  
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The initial state of the generator thus defined is the concatenation of 
the initial states of n LFSRs and the 1+m  bits of the initial memory (the 
bits of 1−β  and 1−c ). 

The Figure 2 represents an α -generator over .2mF  

Note that ,,,2,1,,2,1 iniiinii xxxxxx
ααα=α

+++ ""  so we can compute 

inii xxx
i

,,2,1
1 αααβ − "  as follows: 

( ( ( ))).11
,1,2,,,2,1

−− βααα=αααβ i
xxxxxx

i
iiininii ""  

 

Figure 2. generator-α over .2mF  

This implementation performs a series of not more than n 
multiplications by .α  In binary notation, this can be done by a series of 

left shift eventually followed by a bitwise XOR with a fixed mask (at most 
n times). 

It should be noted also that the proposed choice of γ  allows that the 

expression 1−γ ic  be equal to { },010…  if 01 =−ic  or { },010…  if 11 =−ic  

in binary notation. 
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Define as usual 

( ) ( ) ,1, m
qmqN

m −ϕ
=  

where ϕ  is the Euler’s totient function ([5]). 

Let us notice that, from n given LFSRs, one can construct ( )mN ,2  

generators-α  on m2F  using these n LFSRs, where ( )mN ,2  is the 

number of primitive polynomial of degree m over [ ].2 xF  

More precisely, to construct a representation of the field ,2mF  we 

have to choose a primitive polynomial of degree m on [ ].2 xF  The 

coefficients of this polynomial are involved in the implementation of an 
generator,-α  because they are used in the multiplication of an           

element-2mF  by one of its primitive elements. So, given n LFSRs, each 

choice of a primitive polynomial of degree m allows the construction of an    
α -generator over m2F  based on these n LFSRs. 

4.1. Period and linear complexity 

In the rest of paper, the notation per(s) denotes the period of the 
periodic sequence s. 

Lemma 1. Let nLL ,,1 …  be the lengths of n LFSRs of an                  

α -generator over .2mF  Let 

( ) ,2,
12

12,,12lcm 1
1

1

−∑
=

=σ
−

−−
= i

i

n L
i

n

i
L

LL
i hh "  

and 

( )

{ }.12min

112,gcd
123

µσ−µ=

≠−µ
−≤µ≤

dividesm

m
m

τ  
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Then the sequence ( ) 0≥β ii  of m-bit β  memory of generator-α is a periodic 

sequence and its period satisfies one of the two following assertions: 

(1) if 12 −m  divides ,σ  then ( ) ( );12,,12lcm 1 −−=β nLLper "  

(2) if 12 −m  does not divides ,σ  then ( ) ( ,,12lcm 1 "−×=β Lper τ  

).12 −nL  

Proof. The period of the sequence ( ) 0,,1 ≥++ iini xx "  is 

( ( ) ( )) ( ).12,,12lcmper,,perlcm 111 −−== nLLxxT "…  

In addition, according to Proposition 1, we have 

{ }.,,1anyfor,2 1
,

22

0
nix i

iL
L

ji
j

…∈= −
−

=
∑  

Let { }1,,1 −∈ ml …  and .1
lα=β−  First, we give the general expression 

of the sequence .β  We have 

( ) ;0,0,10,0,1
0

lxxxxl nn +++++
α=αα=β

""  

( ) ( ) ;1,1,10,0,10,0,1
01

lxxxxxx nnn ++++++++
α=αβ=β

"""  

#  

( ) ( ) ( ) .,,11,1,10,0,10,0,1
1

lxxxxxxxx
ii

ininnn ++++++++++++
− α=αβ=β

"""""  

Thus for any 
( )

.,0 ,,10 lxx
i

jnj
i
ji

+++∑ =α=β≥
"

 Hence, the Tβ  term can be 

expressed as follows: 

( ) lxx
T

jnj
T
j +++∑ =α=β ,,10 "

 

( ) ( )
.,,1,,1

1
0 lxxxx pnpjnj

T
j ++++++∑ −
=α=

""
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The calculation of the exponent of α  in the expression Tβ  gives 

( ) ( ) lxxxx njnj

T

j
++++++∑

−

=
0,0,1,,1

1

0
""  

( ) lxxx nji

T

j

n

i
++++













= ∑∑

−

==
0,0,1,

1

01
"  

( )
( ) lxxx nji

xh

j

n

i

ii
++++













= ∑∑

−

==
0,0,1,

1per

01
"  

( )
( ) lxxxh nji

x

j
i

n

i

i
++++













= ∑∑

−

==
0,0,1,

1per

01
"  

( ) lxxh n
L

i

n

i

i ++++= −

=
∑ 0,0,1

1

1
2 "  

( ) .0,0,1 lxx n ++++σ= "  

Thus, we have ( ) .0,0,1 lxx
T

n ++++σ
α=β

"  

Now, let us proceed by case analysis. 

- If ( )12 −=σ mk  with { },0−∈ Nk  then we have 

( ) lxx
T

n ++++σ
α=β 0,0,1 "  

( ) ( ) lxxk nm +++− αα= 0,0,112 "  

( ) .0
0,0,1 β=α=

+++ lxx n"  

This implies that iiT β=β +  for any ,0≥i  because 

.0anyfor,,,1,,1 ≥++=++ ++ ixxxx iniiTniT ""  
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Therefore, we obtain ( ) T=βper  if 12 −m  divides .σ  

- Now, let us suppose that 12 −m  does not divide .σ  Continuing to 
calculate the terms of the sequence β  after the term ,Tβ  one can easily 

see that 

( ) .,1anyfor 0,0,1 lxxk
kT

nk ++++σ
α=β≥

"  

This implies that the period of β  is necessarily equal to .Tτ  Indeed, as 

12 −m  divides ,στ  then ,1=α στ  therefore, we have 

( ) lxx
T

n ++++σ
α=β 0,0,1 "τ

τ  

( ) ( ) lxx n +++σ αα= 0,0,1 "τ  

( ) .0
0,0,1 β=α=

+++ lxx n"  

We can deduce that iiT β=β +τ  for any ,0≥i  because 

.0anyfor,,,1,,1 ≥++=++ ++ ixxxx iniiTniT "" ττ  

In this case, the period of the sequence β  is equal to 

( ( ) ( )).per,,perlcm 1 nxx "×τ  

Lemma 2. The sequence ( ) 0≥= iicc  of binary memory of an              

α -generator over m2F  is a periodic sequence of period equal to that of the 

m-bit memory sequence .β  

Proof. By definition, we have ( ).msb 1−γ⊕β= ic
iic  The expression 

1−γ ic  can be written in the form .111
−− ⊕γ=γ − ii

c cci  Replacing iβ  by 

,,0
1

,2
1

,1 i
m

im
m

im bbb ⊕⊕α⊕α −
−

−
− "  we have for ,0≥i  

(( ) ( ))11,0
1

,2
1

,1msb −−
−

−
−

− ⊕γ⊕⊕⊕α⊕α= iii
m

im
m

imi ccbbbc "  

 .1,1 −− ⊕= iim cb  
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Since β  is a periodic sequence, ( ) 0,1 ≥− iimb  is also periodic. We deduce 

that the sequence c is periodic and has the same period as .β  

Now, we focus on the periodicity of a output sequence of generator-α  

over .2mF  The following result follows from Lemmas 1 and 2. 

Theorem 3. Let nLL ,,1 …  be the lengths of all n LFSRs of an         

generator-α  over .2mF  Let 

( ) ,2,
12

12,,12lcm 1
1

1

−∑
=

=σ
−

−−
= i

i

n L
i

n

i
L

LL
i hh "  

and 

( )

{ }.12|min

112,gcd
123

µσ−µ=

≠−µ
−≤µ≤

dividesm

m
m

τ  

An output sequence Y of the generator-α  over m2F  is periodic sequence 

and its period is given by 

( )
( )

( )





σ−−−×

σ−−−
=

.12,12,,12lcm

,12,12,,12lcm

1

1

dividesnotdoesif

dividesif
Yper

mLL

mLL

n

n

"

"

τ
 

(4) 

Proof. Since the sequence of memory β  and c are periodic with 

common period, and ( ),lsb 1−γ⊕β= ic
iiy  then the periodicity of the 

sequence Y follows. In addition, the period is the same as the memory 
ones. 

If 12 −m  is prime, then we can refine the conditions for the 
determination of per(Y). To this end, we will first recall a classical result 
(Lemma 3). 

Lemma 3. Let r and s be two positive integers with .sr <  Then 

12 −r  divides ,12 −s  if and only if r divides s. 
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Corollary 1. Let m be a positive integer such that 12 −m  is prime. 
Let nLL ,,1 …  be the lengths of n LFSRs of an generator-α over .2mF  

Then the period of an output sequence Y from the generator-α satisfies 

( )
( )

( ) ( )





∃−−×−

≤≤−−
=

.,,12,,12lcm12

,1|,12,,12lcm

1

1

i
LLm

i
LL

Lmiif

nianyforLmif
Yper

n

n

"

"
 

Proof. Let 

( ) .2and
12

12,,12lcm 1
1

1

−∑
=

=σ
−

−−
= i

i

n L
i

n

i
L

LL
i hh "  

Since 12 −m  is prime, then ( ) 112,gcd =−µ m  for any positive integer µ  

less than .12 −m  By Theorem 3, we have ( ) ( ,,12lcmper 1 "−= LY  

),12 −nL  if 12 −m  divides ,σ  otherwise ( ) ( ) ( ,12lcm12per 1 −×−= LmY  

).12, −nL"  But, 12 −m  divides σ  if and only if it divides ih  for all 

{ }.,,1 ni …∈  This is equivalent, by Lemma 3, to m divides iL  for all 

{ }.,,1 ni …∈  

Example 1. Consider two LFSRs whose characteristics are: 

- LFSR1: length ,21 =L  feedback polynomial ,12 ++= XX  generates 

( ) .3per, 11 =xx  

- LFSR2: length ,32 =L  feedback polynomial ,123 ++= XX  generates 

( ) .7per, 22 =xx  

We are in the case ( ( ) ( )) ,3,7,21per,perlcm 2121 === hhxx  and 

.264327 =×+×=σ  

The period of the generator-α  based on these two LFSRs will be 

discuss according to the choice of the finite field: 
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(1) Let 422 FF =  be the finite field with 4 elements and 4F∈α  be a 

primitive element. We have gcd(3, 26) = 1. Then, the period of the output 
sequence from the generator-α  over 4F  is 63 for a given nonzero 

initialization of the LFSRs. 

(2) Let 823 FF =  be the finite field with 8 elements and 8F∈α  be a 

primitive element. Here .712 =−m  For the α -generator over 8F  formed 

by the two above LFSRs, we have ( ) .17,gcd =σ  So, for a given nonzero 

initialization of the LFSR, this generator-α  over 8F  produces sequences 

of period .147217 =×  

(3) Let 25628 FF =  be the finite field of order 256 and 256F∈α  be a 

primitive element. Since 255 does not divide ,σ  then the generator-α  

over 256F  that combines the above two LFSRs produces sequences of 

period .535521255 =×  

Remark 1. For the periodicity of a sequence Y produced by an          
generator-α  over ,2mF  there are two cases in terms of length. The first 

case is when all the n LFSRs have the same length. The second case is 
when the lengths of all LFSRs are relatively prime. For both cases, we 
have the following result: 

Theorem 4. Let nLL ,,1 …  be the lengths of n LFSRs of an              

generator-α  over .2mF  Let Y be an output sequence from this                   

.-generatorα  We have the following assertions:  

(1) If ( ) ,1,,gcd 1 =nLL …  then 

( ) ( ) ( ).12,,12lcm12 1 −−×−= nLLmYper "  

(2) If ,1 LLL n === …  then by putting 

{ },12|min
121

ndividesm
m

µ−µ=
−≤µ≤

τ  
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we have 

( ) ( ).12 −= LYper τ  

Proof. Let 

( ) .2and
12

12,,12lcm 1
1

1

−∑
=

=σ
−

−−
= i

i

n L
i

n

i
L

LL
i hh "  

(1) If ( ) ,1,,gcd 1 =nLL …  then 

( ) ( ),12,112,,12gcd
,1

1 −==−− ∏
≠=

jn L
n

ijj
i

LL h"  

( ) ,1,,gcdand 1 =nhh …  

then, by Theorem 3, we have ( ) ( ),12,,12lcmper 1 −−= nLLY "  if 

12 −m  divides .σ  This is equivalent to say that 12 −m  divides ih  for 

any { }.,,1 ni …∈  This is possible if and only if m divides iL  for any 

{ }ni ,,1 …∈  (Lemma 3). Since ( ) ,1,,gcd 1 =nLL …  we have thus, 

( ) ( ).12,,12lcmper 1 −−> nLLY "  

Now, let kr
k

rrm ppp …21
2112 =−  as its decomposition into prime 

factors greater than 2. Let ( ) .12 ,1
ji r

j
k

ijj
r
i

m
i ppP ∏ ≠=

=−=  

For 1=i  to n, we have 

.2 1

,11
−∏∑

≠==
=σ tj L

t
r
j

k

ijj

n

t
i hpP  

Since ( ) ,1,,gcd 1 =nhh …  then there exists a term of the sum in which 

the ip  factor does not appear. Thus, the product σiP  is not divisible by 

.12 −m  Consequently, the period of a sequence Y at the output of           
generator-α  is equal to 
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( ) ( ).12,,12lcm12 1 −−×− nLLm "  

(2) If ,1 LLL n === …  then 11 === nhh …  and ( ).2 1−=σ Ln  So, 

the divisibility of σ  by 12 −m  is equivalent to the divisibility of n by 

12 −m  because ( ) .112,2gcd 1 =−− mL  Therefore, we have ( ) =Yper  

( ).12 −× Lτ  

Now, let us study the linear complexity of an generator-α  over .2mF  

It is not unreasonable to continue to talk of linear complexity of an             
generator-α  over ,2mF  although its combination function uses 

exponentiation in the multiplicative group ,2
∗
mF  which is far from being a 

linear function. Since it is periodic and that any periodic sequence is 
considered linear recurring, it would be interesting to get an idea of its 
linear complexity. To this purpose, we conducted experiments whose 
results are given in Tables 1, 2, and 3. Since, generators-α  over m2F  

have very great period, we considered those who consist of LFSR of small 
length .iL  To conduct these simulation examples of linear complexity 

(LC), we choose { }8,7,6,5,4,3∈m  and { }.6,5,4,3,2∈iL  We denoted 

per and LCM, respectively, the period of an generator-α  and the least 

common multiple of LFSRs periods component it. Based on these 
experiences, we formulate the following result we could not give a 
theoretical demonstration for now. 

Theorem 5. Let nLL ,,1 …  be the lengths of n LFSRs of an               

generator-α  over .2mF  Let Y be an output sequence from this                  

.-generatorα  The linear complexity LC of Y satisfies 

( ) ( ) .112,,12lcm12,,12lcm 11 +−−×≤≤−− nn LLLL mLC ……  
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Table 1. 

( )21, LL  

(3, 4) (3, 5) (3, 6) 
Basis 
field 

LCM per LC  LCM per LC LCM per LC 

32F  105 735 315 217 1519 631 63 441 190 

42F  105 1575 420 217 3255 840 63 315 158 

52F  105 3255 526 217 6727 1086 63 1953 316 

62F  105 6615 631 217 13671 1302 63 1323 378 

72F  105 13335 735 217 27559 1520 63 8001 441 

82F  105 26775 841 217 55335 1736 63 5355 126 

Comparison of complexity between generators: Table 4 provides a 
comparison of periods and linear complexities of generator-α  over ,2mF  

generators by combining boolean function and summation generators, 
using n maximal LFSRs with lengths ,,, 21 …LL  and ,nL  where =LCM  

( )12,,12lcm 1 −− nLL …  and LC is the linear complexity. 

4.2. Statistical tests 

In order to test pseudo-random property of sequences generated by 
,generators-α  we have taken an example of generators-α  using LFSRs 

whose characteristics are: 
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Table 2. 

( )21, LL  

(4, 5) (4, 6) 
Basis 
field 

LCM per LC LCM Per LC 

32F  465 3255 1350 315 2205 946 

42F  465 6975 1801 315 1575 787 

52F  465 14415 2325 315 9765 1575 

62F  465 29295 2791 315 6615 1891 

72F  465 59055 3256 315 40005 2206 

82F  465 118575 3721 315 26775 2521 

Table 3. 

( )321 ,, LLL  

(2, 3, 5) (2, 3, 6) 
Basis 
field 

LCM  per LC LCM per LC 

32F  651 4557 1891 63 441 189 

42F  651 9765 2520 63 189 94 

52F  651 20181 3255 63 1953 315 

62F  651 39711 3907 63 3969 379 

72F  651 82677 4557 63 8001 441 

82F  651 166005 5209 63 3213 505 
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Table 4. Comparison of period and complexity 

Generator Period Linear complexity 

 Combining boolean function LCM LCMLC  

 Combining by summation LCM LCMLC ≈  

generator-α  LCM×τ  with 

121 −≤≤ mτ   

1LCMLCLCM +×≤≤ m  

– LFSR1: length ,111 =L  feedback polynomial ,125811 ++++= XXXX  

– LFSR2: length ,132 =L  feedback polynomial ,127913 ++++= XXXX  

– LFSR3: length ,173 =L  feedback polynomial ,1481217 ++++= XXXX  

– LFSR4: length ,194 =L  feedback polynomial .1491319 ++++= XXXX  

In order to construct these generators, we have the following 
combination of LFSRs over m2F  for :32,16∈m  (LFSR1, LFSR2, LFSR3, 

and LFSR4). 

The statistical tests of these generators-α  were performed by using 

the NIST Test Suite [9]. For each selected generator, we sampled 100 

sequences of size .106  For each statistical test, a set of p-values 
(corresponding to the set of sequences) is produced. If p-value ,01.0≥  the 
tested sequence is considered to be random. For each statistical test, the 
proportion of sequences that pass the test is computed. The expected 
proportion of sequences that pass a test is equal to .10096  The results 

of these tests, given in Table 5, show that generators produce sequences 
of very good quality statistics. 
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Table 5. NIST statistical tests 

 (LFSR1, LFSR2, LFSR3, LFSR4) 

 On 162F  On 322F  

Test Proportion Proportion 

Frequency  10099  10099  

Block Frequency  100100  100100  

Cumulative Sums  100100  10098  

Cumulative Sums  10099  100100  

Runs  100100  10099  

Longest Run  10098  10098  

Rank  100100  10098  

FFT  10098  100100  

Maurer  100100  10099  

Approximate Entropy  10095  10096  

Serial  100100  100100  

Serial  10098  100100  

Linear Complexity  100100  100100  

4.3. Security analysis of generators-α  

For our security analysis, only the initialization of the generator is 
not known, all other parameters of the system are known. An attack is 
aimed at recovering the initial state of a generator from several output 
terms read after the end of the initialization phase. These attacks 
attempt to exploit either the algebraic structure of the generator or its 
statistical quality. First, we try to exploit the structure of our generator 
to provide a security argument. Then, we focus on algebraic attacks and 
correlation attacks. 
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An argument of security 

In this part, we examine the possibility to find a breach of security 
through the exponentiation method used by our generator. 

Consider the expression of an output sequence Y from an                  
generator-α  over .2mF  We have 

( ),lsb,0anyfor 1−γ⊕β=≥ ic
iiyi  

where .,,1
1

ini xx
ii

++
− αβ=β

"  This expression of iβ  can be written as 

,ii xz
i αα=β  with { }22,,1,0 −∈ m

iz …  and ∈++= inii xxx ,,1 "  

{ }n,,1,0 "  (the sum is performed in Z ), i.e., ix  is the integer sum of 

the i-th output of LFSR. Thus, ,iti α=β  with { m
iii zxt 2,,1,0 "∈+=  

}.2−+ n  Therefore, the calculation of iβ  consists in calculating powers of 

,α  where successive exponents it  are not ordered. 

Since we cannot predict the state of a LFSR at a clock cycle            
(one iteration) without knowing at least one of its preceding states, its 
output becomes unpredictable. Thus, it is the same for the sequence ( ).ix  

Therefore, we cannot predict the exponents .it  As a result, it is 

impossible to predict the sequences β  and c (c being related to β ). 

Since Y is a function of the sequences β  and c, and thus with the 

argument above, it is impossible to predict a term of the output sequence 
of the generator,-α  by trying to exploit the fact that α -generator uses 

the exponentiation in the group .2
∗
mF  

Algebraic attacks 

Assume that we have k bits 10 ,, −kyy …  produced by an α -generator 

over m2F  from a given initialization. 
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Denote by ( )ini xx ,,1 ,, …  the n-tuple representing the i-th output 

from n LFSRs. We denote the function that takes 1,,1 ,,, −βiini xx …  and 

1−ic  to give the i-th output iy  from the α -generator by .ω  Then, we 

must try to form the following system: 

( ) ,10,,,,, 11,,1 −≤≤βω= −− kicxxy iiinii …  

where the unknowns are the bits of the initializations of all the n LFSRs 
and those of the initial memory (bits 1−β  and 1−c ). 

The ability to form and solve this system depends on the function .ω  
An improved variant of this basis algebraic attack can be found in [2]. 
According to the relation (3), we have 

( ) .10forlsb 1,,1
1 −≤≤γ⊕αβ= −++
− kiy iini cxx

ii
"  

So, there are ( )2−m  unknown elements imi aa ,2,1 ,, −…  of 2F  such that 

.,1
2

,2
2

,2
1

1 1,,1
iii

m
im

m
i

cxx
i yaaaciini ⊕α⊕α⊕⊕α⊕α=γ⊕αβ −

−
−++

−
− ""  

This is equivalent to 

.,1
2

,2
2

,21 1,,1
iii

m
imi

cxx
i yaaaciini =α⊕α⊕⊕α⊕γ⊕γ⊕αβ −

−
++

−
− ""  

Let { }1,,1 −∈ ml …  and .1
lα=β−  

So using the fact that 
( )

,,,10,,1
1

lxxxx
i

jnj
i
jini +++∑++

−
=α=αβ

""  then 

the above system becomes: For ,10 −≤≤ ki  

( )
.,1

2
,2

2
,21,,10

iii
m

imi
clxx

yaaacijnj
i
j =α⊕α⊕⊕α⊕γ⊕γ⊕α −

−
+++∑

−= "
"  

(5) 

We do not see how can we exploit the system (5) to find the bits of the 
initial states of LFSRs and the bits of initial memory ( 1−c  and 1−β ). 
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Now, let us look if we can form a polynomial system using the fact 

that ,aα  where a is a bit, can be written as .aa ⊕α  

We can write 1−γ⊕β ic
i  as 

( ) 1,,101 −=− γ⊕α=γ⊕β
+++∑ ijnj

i
ji clxxc

i
"

 

( ) .11,,
10

−−
==

⊕γ⊕⊕αα= ∏∏ iijrjr

n

r

i

j

l ccxx  (6) 

Considering relation (6), we see that if we try to form a system of 
polynomial equations with unknowns, the bits of the initial states of the 
n LFSRs and initial memory (bits of 1−β  and 1−c ), then the degree of the    

t-th equation is ( ).1+nt  It quickly becomes infeasible to obtain such 

equations. Moreover, the complexity of techniques for solving nonlinear 
systems increases exponentially with the degree of the equations. We 
also see that, after the initial state of the generator, the degree of the bits 
of the memory (m-bit memory and binary memory) expressed as function 
of bits of the previous state is .1+n  Because of this, the attack in [2] 
may not apply. 

Thus, we see that the output sequence Y from the generator-α  has an 

algebraic description more difficult to exploit. With these arguments, we 
believe that the generator-α is resistant to algebraic attacks. 

In addition, based on the observation that the degree of the t-th 
output from the generator-α  is ( )1+nt  (so the degree quickly increases), 

cubes attacks described in [3] by Itai Dinur and Adi Shamir are 
impracticable against the generator.-α  

Correlation attacks 

The original correlation attack is due to Siegenthaler [12, 11]. He 
brought against generators based on a combination of LFSR with a 
nonlinear boolean function f (it applies to generators of a filtered LFSR). 
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It consists to consider the correlation between the output of the function f 
with n variables and t fixed elements of its inputs with .nt <  If by fixing 
these t elements of the entries of f changes the distribution of the output 
of f, then we can plan a correlation attack. However, if f remains 
balanced, then there is no correlation of order t (uncorrelated with 

respect to its t terms). Clearly, the aim is to find a linear function g of t
2F  

into 2F  such that 

({( ) ( ) ( )}) .2
1,,,,,,Prob 1121 >=∈ tin

n
n izgzzfzz ……… F  

If this linear function exists, then we can consider conducting a 
correlation attack by an exhaustive search on the t fixed inputs. For a 
large value of t, this attack becomes ineffective because the complexity of 
the exhaustive search will be very large. Subsequently, a variation of this 
attack, called fast correlation attack, is proposed by Meier and  
Staffelbach [7]. This alternative approach uses decoding techniques 
instead of exhaustive search, which reduces the complexity of the attack. 

In this part, we will analyze the feasibility of conducting a correlation 
attack on an generator-α  over .2mF  

Let δ  and ϑ  be the exponential and summation function, 
respectively, defined by 

{ } ,22,,1,0: 2
∗→−+δ mnm F…  

,zz α6  

{ } { } { },22,,1,022,,1,01,0: −+→−×ϑ nmmn ……  

( ) .,,, 1,,11,,1 −− λ+++λ iiniiini xxxx "6"  

The computation of ,1,,2,1,,2,1
1

−λ+++++++
− α=αβ=β iiniiinii xxxxxx

ii
""  

with ,11
−

λ β=α − ii  corresponds to calculate the image of the vector ( ,,1 ix  

)1,,2 ,,, −λiini xx "  by the composite function .ϑδ D  
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The function ϑ  is nonlinear at the binary level and has the 
additional property that fixing some of its inputs that does not change in 
the distribution of its outputs. In fact, the function ϑ  is n-resilient and is 
also an exponential function, then there is no linear relation between the 
bits of the binary notation of ( ( ))1,,1 ,,, −λϑδ=β iinii xx "  and ,, ijx  

where .1 nj ≤≤  Furthermore, we notice that the result of the addition 

of 11 1 −− γ⊕=γ −
ii c

i
c c  to iβ  occurs in .iy  Then iy  became a linear 

function of 1−ic  and the most significant bit of the binary representation 

of .iβ  This cannot be used to perform an attack. 

With the above arguments, we conclude that the generators-α  resist 

to correlation attacks. 

5. Implementation Properties 

In this section, we give implementation properties of .generators-α  

An generator-α  over m2F  based on n LFSRs use the multiplication 

by ,kα  with ,0 nk ≤≤  in the polynomial basis. Therefore, we must 
build a circuit capable of multiplication by α  in the polynomial basis. It 
is well known that a Galois LFSR of length m can do this. So to perform a 

multiplication by ,kα  we must perform k cycles with this Galois LFSR. 
Thus, the total gate count for different parts of the generator is 
approximately the number of gates required to implement 1+n  LFSR 
(with an LFSR of length m). 

6. Conclusion 

In this paper, we introduced a new family of generators by combining 
LFSRs, which we called the family of the .generators-α  These generators 

produce sequences of very large periods and rather high linear 
complexity. They resist both to correlation and algebraic attacks. 
Moreover, they can be implemented easily by using simple operations 
such as “exclusive or” and “shift”. 
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