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Abstract

The pseudo-random generators based on LFSR are widely used in stream cipher
cryptosystems. In this paper, we propose a new family of pseudo-random
generators based on LFSR: The family of the “a-generators”. We named them
o-generators, because to define these generators, we use a primitive element
o of the multiplicative group of a finite field. We show that these generators
produce sequences of very large period and we find that they have very large
linear complexity. Moreover, we find that they resist correlation attacks and

algebraic attacks.
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1. Introduction

A linear feedback shift register (LFSR) allows the production of
linear recurring sequences [5] having significant statistical properties for
their application in cryptography. It is sufficient to exchange the initial
state of the generator to produce the same output sequence on each side
of the communication. However, these properties are not good enough to
directly use LFSR for security goals. Indeed, the algorithm of Berlekamp-
Massey ([1], [6]) makes possible to find all the initial parameters of LFSR
from the knowledge of a small number of successive bits of an output
sequence. In order to be able to use LFSR anyway, we have two methods
which mask their linear structure by adding a component. These methods
consist in either combining several LFSRs or to filter only one LFSR by a
nonlinear function. For the combination method, one distinguishes:
combination of generators by a nonlinear boolean function, summation
generators [10], and generators by clock controlling (see [4], for example).
Many attacks were proposed against these generators, in particular,

correlation [12] and algebraic [2] attacks.

In this paper, we propose a new family of generators obtained by
combination which we call the family of the o -generators. After a short

recall on the LFSR, we recall some concepts on the finite fields ]Fz’”’

which will be useful for our construction. Then we give the description of

an o -generator over a finite field F2m, then we make a security analysis

of these generators before concluding.

2. Linear Feedback Shift Register

and m-Sequences

In this section, we recall briefly the description of the LFSR over the
binary field Fy. A linear feedback shift register (LFSR) consists in a

collection of flip-flops (single-bit memories) set up in a linear fashion and
clocked. The length % of the LFSR is determined by the number of flip-
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flops. The initial value of the register is called seed. At each cycle of the
circuit clock, the LFSR outputs a bit u;. The output sequence

U = (u;);.y of the LFSR is completely determined by the seed and

satisfies a relation of the form

k
Uirk = anumkfn mod 2, )
n=1

where the sequence (fi, ..., fi) is a binary vector with f, = 1. Moreover,

U is a periodic sequence of period to most equal to 2k _1. Ifits period is

equal to ok _ 1, then it is called a maximal length sequence, m-sequence

for short, and the LFSR is known as maximal (see [5]).
The sequence (fi, ..., fr) 1s related to the feedback polynomial

defined by f(x)=1® fix® - ® kak. To produce a maximal LFSR

which produces m-sequences, we must choose a primitive feedback
polynomial (see [5, 8]). The linear complexity of a periodic sequence is the

length of smallest LFSR being able to generate it.
The following result is an interesting property of the m-sequences:

Proposition 1 ([5, 8]). If U is a sequence generated by a maximal

LFSR of length k, then in every period of U, zeros occur —1 times

and ones occur times.

The m-sequences have many significant properties. However, one
should not directly use such a sequence for cryptographic applications.
One can retrieve its secret parameters (feedback polynomial and initial
state of registers) thanks its linearity. Indeed, thanks the algorithm of
Berlekamp-Massey [5], if a sequence has a small linear complexity k&,

then the knowledge of 2k consecutive bits of the sequence makes possible
the discovery of the LFSR parameters of the length k, with only O(k?)

binary operations.
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Hence, this leads the idea to combine several distinct LFSRs or to
filter only one LFSR by a nonlinear function, in order to produce
sequences having a sufficient linear complexity to be out of range of the
Berlekamp-Massey algorithm. In the family of the generator
combinations, one distinguishes: combination of generators through a
nonlinear boolean function, combination of generators with a function
with memory and the generators with clock control. All generators with
the clock control have an equivalent generator among the generators
combined by a nonlinear boolean function. Hence, they are identical in
terms of security. However, we will present these generators and propose,

in the fourth section, a new approach to combine LFSRs.
2.1. Combination generator with nonlinear boolean function

A boolean function of n variables is a function with n binary inputs

and one binary output.

A combination generator with nonlinear boolean function is a
nonlinear boolean function f of n variables, which takes the outputs of

parallel LFSRs as input. The combination generator outputs y;

computed from each LFSR output as shown in Figure 1(a), i.e.,
Vi = f(x1,i50s Xp i),

where (x; ;), 1 <i < n, is the output sequence of i-th LFSR. Let L; be
the length of the i-th LFSR. The period and linear complexity of the
output sequence Y = (y;); of combination generator with nonlinear
boolean function are as follows:

Theorem 1 ([5]). The linear complexity of Y is f(Ly, ..., L,)

evaluated over Z. The period of Y is equal to lem(Ly, ..., L,).
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2.2. Summation generators (Rueppel’s generator)
Rueppel’s summation generator [10] (see Figure 1(b)) is composed of
n maximal LFSRs and a memory m of (logg(n)-1) bits. Let

(x;j),1<i<n, be the output sequence of LFSR i. The summation

generator output sequence Y = (y;) is defined by the following

120

relation:

y] =x1’j+xz’j+...+xn,j+mj_1 m0d2,
for j >0, (2
mj =Xk xg e Xy b madive,

where “mod 2” and “div 2” denote, respectively, the remainder and
quotient of integer division by 2.

The important property of the summation generator output sequence

Y is the following result:

Theorem 2 ([10]). The period of the sequence Y is lcmlgign(zLi -1)

and its linear complexity is approximately equal to this value.



PIERRE DUSART et al.

X1
- LFSR 1 - -
X
L .| LFSR2 : - v
f —
x .
= LFSRn ol -

(a) Combination with nonlinear boolean function.

Miq
- i
X1
- LFSR 1 . -
div 2
X~ . d?2
o LFSR2 2. - T mo
x .
= LFSRn .l -

(b) Summation generator.

Figure 1. Classical methods of combination of LFSR.
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3. Finite Field ]F2m

Let m be a positive integer and IFZ,,L be the finite field with order 2™.

Let f(x)=x" @ f, 1x™ ' ®-.-® f, be a primitive polynomial over F,
and let a be a root of f(x), ie., f(a)=0. We have the following

1somorphism:
Eyn = Fy(a) = Fylx]/ (F(x)),
to represent IFzm.

To construct this structure, we need to choose o as a primitive

m
(XZ -1

element of the multiplicative group of IE‘zm, ie., =1, where

2™ —1 is the smallest positive integer, which satisfies this identity. In

particular, every element a of ]F2m satisfies the relation azm_1 =1. If
a # 0, then a = a for some integer £k (1 < k < 2™ —1).

Moreover, F,

om is a vector space of dimension m over Fy, whose the

2

polynomial basis is (1, a, a?, ..., (xm_l). Any element a of ]Fzm can be

written uniquely in the form
a=a,10"®  ®aa®ay, wherea; cF,.

This form is called polynomial representation. We can also represent the

same element a in binary notation by a = {a,,_1a,,_9 ... ag }-.

For a ={a,,_1a,,_9...a0} € Fom s Isb(a) = @y and msb(a) = a,,_;
are, respectively, the least significant bit and most significant bit of a.

We will now describe the addition in IE‘zm and the multiplication by

o. These two operations are carried out in a very simple way. Indeed, the



8 PIERRE DUSART et al.
addition (also denoted by @) of two elements of ]Fz’" corresponds to an

XOR between the coefficients in the polynomial representation of the two
terms. Clearly, the addition corresponds with the simple bitwise XOR at
the m-bit level.

The multiplication of a e IFzm by a corresponds to a simple left shift
by one bit of its binary notation, followed by an XOR with the fixed mask

{fm-1fm-a ---fo}, if msb(a) = 1.

4. The o-Generators

Let m > 2 be an integer and F2m be the finite field of order 2. Let
us agree that o is a primitive element of ]F2m.
In the rest of paper, n denotes the number of LFSRs (integer greater

than 1) and we choose always maximal LFSRs (LFSRs which produce

m-sequences).

Definition 1. An o -generator over IFzm is composed of n maximal
LFSRs and (m +1)-bit memory divided in a binary memory ¢ and an
m-bit memory B e F. Let y = o™ and xp (%, );so be the output
sequence of the k-th LFSR (1 < k < n). Then, the output sequence

Y = (;);s0 of an o -generator is given by

X1+ jHoH X

B, =B ,

for 120, c¢; = msb(B; ® yi-1), 3

y; = 1sb(B; ® yi-1),

with initializations of memory state: c¢_; € {0,1} and B_; a nonzero

power of o (B_; = a!, where [ € {1, ..., 2™ - 2}).
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The initial state of the generator thus defined is the concatenation of
the initial states of n LFSRs and the m + 1 bits of the initial memory (the
bits of B_; and c_y).

The Figure 2 represents an o -generator over Fzm.

xl,i+x2,i+"'+xn,i _ Otxl’i(lx2’i . Xn.i

Note that o o ™' so we can compute

Biqo Mo B oa ™ as follows:

Bi,laxl’i(xxz’i axn’i _ (xxn’i ( (axz,i (axl’iﬁi—l )))

Bi.1 -1
X.! i A 4 ,_t_‘.‘, | j—
LFSR 1 . - !
\
X msb
2. Y.
LFSR 2 - B + .
Isb
xn i
LFSR n : >

Figure 2. a-generator over Fzm.

This implementation performs a series of not more than n

multiplications by o. In binary notation, this can be done by a series of

left shift eventually followed by a bitwise XOR with a fixed mask (at most

n times).
It should be noted also that the proposed choice of y allows that the

expression Y1 be equal to {0...01}, if ¢;_; = 0 or {10...0}, if ¢; ; =1

in binary notation.
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Define as usual
m
-1
N(q, m) — (P(q ),
m

where ¢ is the Euler’s totient function ([5]).
Let us notice that, from n given LFSRs, one can construct N(2, m)
a-generators on F,, using these n LFSRs, where N (2, m) is the

number of primitive polynomial of degree m over Fy|x].

More precisely, to construct a representation of the field ]F2m, we

have to choose a primitive polynomial of degree m on Fy[x]. The

coefficients of this polynomial are involved in the implementation of an

a-generator, because they are used in the multiplication of an

]Fzm -element by one of its primitive elements. So, given n LFSRs, each
choice of a primitive polynomial of degree m allows the construction of an
o -generator over IFzm based on these n LFSRs.

4.1. Period and linear complexity

In the rest of paper, the notation per(s) denotes the period of the

periodic sequence s.

Lemma 1. Let Ly,..., L, be the lengths of n LFSRs of an

o -generator over IF2m. Let

L 1 ... 9l _ = ,
hy = lem(2 ,%f , 2 1)’ G- ZhﬂLH’
27 -1 i1

and

T = min  {u/2™ -1 divides pc}.
3<u<2™ -1
ged(p, 2™ -1)#1
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Then the sequence (B;);>o of m-bit p memory of o-generator is a periodic

sequence and its period satisfies one of the two following assertions:

(1) if 2™ -1 divides o, then per(B) = lem(2™1 -1, ..., 250 _1);

(2) if 2™ -1 does not divides o, then per(B) = T x 1cm(2l’l -1, -,
oln _1).

Proof. The period of the sequence (x; ; + -+ + %, ; );5¢ 18

T = lem(per(x;), ..., per(x;)) = lem(25 —1, ..., 2ln —1).
In addition, according to Proposition 1, we have
oki_g

X
Jj=0

j= 2li7l for any i e {1, ..., n}.
Let [ e {l,..., m—1} and B_; = o. First, we give the general expression

of the sequence B. We have

X1 0+ o+ X1 0+Hx +1
By = ol 50 no _ (x( 1,0 n,0)+1,

)

X170+ +x X1 0+ +X +(x7 1+ +x +1
B, = Boa™ 0 _ (%10 n,0)+(%1,1 1)+l

>

X1,0+FXn,0 _ a(x1,0+“‘+xn,o J(ey 1+t 1 e (g by )+

B, =B

Zézo(xl,j*'"'”n,j )+1

Thus for any i > 0, B; = a . Hence, the By term can be

expressed as follows:

T
Zj:()(xl,j+"'+xn,j )+1

Br =a

T-1
_ OLZj:O (xl,j+"'+xn,j )+(x1’p+---+xn,p )+1
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The calculation of the exponent of o in the expression By gives

T-1
Z(xl’j +o Xy i)+ (g0 Xy o)+
7=0

n (T-1

= Z in’j +(xp 0+ +x,0)+1
i=1\j=0
n ((hper(x; )-1

= x|+ (g0 2 0) + 1
i-1 j=0
n per(x; )-1

= h; Z xi [+ (2,0 + Xy 0) + 1
i-1 j=0

S

= hi2Li_1+(x1y0+~-~+xn,0)+l
i1

=+ (x4 +%x,0)+1L

Thus, we have By = oc6+(x1’0+m+x”’0)+l

Now, let us proceed by case analysis.
-If 6 = k(2™ —1) with k € N - {0}, then we have

o+(x1 g+ +x +1
o (%1,0 n,0)

Br =

m_ X170+ +x +1

= k2™ -1) (31,0 n,0)
oot +1

GLEL ot a0 )+l Bo.

This implies that Bp,; = B; for any i > 0, because

X1, T4i * 0+ Xy, Tyi = X1+ + X, forany i>0.
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Therefore, we obtain per(B) = 7' if 2" -1 divides o.

- Now, let us suppose that 2 —1 does not divide 5. Continuing to

calculate the terms of the sequence [ after the term Bp, one can easily

see that

ko+ et +1
forany k21, Ppr =o (#1,0%-+++7,0) .

This implies that the period of B is necessarily equal to 77. Indeed, as
2™ _1 divides 7o, then o™ =1, therefore, we have

By aTG+(x]_,O+---+xn’0)+l
T =

(0 )a(x1,0+"'+xn,0)+l

_ Ot(x170+-~+xn70)+l - Bo.
We can deduce that B.p,; = B; for any i > 0, because
X1 +T4i + o+ Xy 1pyi = X1+ + X, , forany 1> 0.
In this case, the period of the sequence B is equal to

T x lem(per(x; ), ---, per(x,)).

Lemma 2. The sequence c¢ = (¢;);sq of binary memory of an
o -generator over ]F2m is a periodic sequence of period equal to that of the

m-bit memory sequence P.

Proof. By definition, we have ¢; = msb(B; ® y1). The expression
y6-1 can be written in the form y“-! = ¢, ;y ®¢;_;. Replacing B; by
bm_l,iocm_l ® bm_z,iam_l ® - @by ;, we have for i > 0,

¢; = msb((by_1,;0" ! @ byy_g ;0" T @ @by ;)@ (1Y ®C_1))

= bm—l,i Dcig.
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Since B is a periodic sequence, (by,_1 ;);»o is also periodic. We deduce

that the sequence c is periodic and has the same period as f.

Now, we focus on the periodicity of a output sequence of a-generator

over IFQm. The following result follows from Lemmas 1 and 2.

Theorem 3. Let Ly, ..., L, be the lengths of all n LFSRs of an

o-generator over IF2m. Let

Li_q, ... 9 _ = ,
hy = lem(2 2, , 2 1), o - ZhiszHr
27 -1 i-1

and

T = min  {u | 2™ -1 divides pc}.
3<u<2™ -1
ged(p, 2™ -1)#1
An output sequence Y of the a-generator over F2m is periodic sequence

and its period is given by

lem(28 -1, ..., 2fn 1), if 2™ -1 divides o,
per(Y) =
T X 1cm(2L1 ~1, .., 2 1), if 2™ -1 does not divides .
4)
Proof. Since the sequence of memory B and ¢ are periodic with
common period, and y; = Isb(B; ® y%-1), then the periodicity of the
sequence Y follows. In addition, the period is the same as the memory

ones.

If 2™ -1 is prime, then we can refine the conditions for the
determination of per(Y). To this end, we will first recall a classical result
(Lemma 3).

Lemma 3. Let r and s be two positive integers with r <s. Then

2" —1 divides 2° — 1, if and only if r divides s.
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Corollary 1. Let m be a positive integer such that 2™ —1 is prime.

Let Ly, ..., L, be the lengths of n LFSRs of an o-generator over ]Fzm‘

Then the period of an output sequence Y from the o-generator satisfies

lcm(2L1 -1, 2 -1), if mlL;, foranyl<i<n,
per(Y) =
(2™ —1)xlem(2h -1, .., 25 —1),  if 3i, m{L,.
Proof. Let

v L

Li _q ... oln _ 12 ‘
h - lem(2 1{, , 2 1) and o - ZhiZLl,l'
27 -1 -1

Since 2™ -1 is prime, then ged(p, 2™ —1) = 1 for any positive integer u

less than 2™ —1. By Theorem 3, we have per(Y) = lem(2l1 -1, -

oln _ 1), if 2™ -1 divides o, otherwise per(Y) = (2" —1)x lcm(21’1 -1,

.., 2F _1). But, 2" -1 divides o if and only if it divides A; for all
i € {l,..., n}. This is equivalent, by Lemma 3, to m divides L; for all

iefl,..,n}.

Example 1. Consider two LFSRs whose characteristics are:

- LFSR1: length L; = 2, feedback polynomial = X 24X+ 1, generates
x1, per(x;) = 3.

- LFSR2: length Lo = 3, feedback polynomial = X 34 x% 4 1, generates
Xq, per(xg) = 7.

We are in the case lem(per(x;), per(xy)) =21, hy =7, hg = 3, and
c=Tx2+3x4 = 26.

The period of the o-generator based on these two LFSRs will be

discuss according to the choice of the finite field:
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(1) Let ]F22 = F, be the finite field with 4 elements and o € F, be a
primitive element. We have ged(3, 26) = 1. Then, the period of the output
sequence from the o-generator over F, is 63 for a given nonzero

initialization of the LFSRs.

(2) Let Fos = Fg be the finite field with 8 elements and o € Fg be a

primitive element. Here 2™ —1 = 7. For the o -generator over Fg formed
by the two above LFSRs, we have ged(o, 7) = 1. So, for a given nonzero
initialization of the LFSR, this a-generator over Fg produces sequences

of period 7 x 21 = 147.
(3) Let Fos = Fas6 be the finite field of order 256 and o € Fosg be a

primitive element. Since 255 does not divide o, then the o-generator
over Fg5s that combines the above two LFSRs produces sequences of

period 255 x 21 = 5355.

Remark 1. For the periodicity of a sequence Y produced by an

o-generator over F_,,, there are two cases in terms of length. The first

case is when all the n LFSRs have the same length. The second case is
when the lengths of all LFSRs are relatively prime. For both cases, we
have the following result:

Theorem 4. Let L, ..., L, be the lengths of n LFSRs of an

o-generator over ]Fzm‘ Let 'Y be an output sequence from this

a-generator. We have the following assertions:
(1) If ged(Ly, ..., L) =1, then
per(Y) = (2™ —1)x lem(281 -1, ..., 250 1),
@ If Ly =...= L, = L, then by putting

T= min {u|2" -1 divides pn},
1<p<2™ -1
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we have
per(Y) = 7(2F - 1).

Proof. Let

Clem(2fr —1, . 2 _1)

h.
' oli _1

and o= Y 21,

n
=1

(1) If ged(Ly, ..., L,) =1, then
L4
ged(2l -1, 202 1) =1, B = H (27 -1),

and gcd(hy, ..., h,) =1,

then, by Theorem 3, we have per(Y) = lcm(2L1 -1, .., 2k -1), if
2™ —1 divides o. This is equivalent to say that 2™ —1 divides h; for
any i € {1, ..., n}. This is possible if and only if m divides L; for any
iefl,..,n} (Lemma 3). Since gcd(Ly, ..., L,)=1 we have thus,

per(Y) > lem(24 -1, ..., 2In 1),

Now, let 2™ -1 = plr1 p;2 pZe as its decomposition into prime

k

7j
j=1,j#i P

factors greater than 2. Let P, = (2™ — 1)/piri = H j

For i =1 to n, we have

n k
T L
Po = Z H pj]htZ t-1,
t=1 =1, j#i

Since ged(hy, ..., h, ) =1, then there exists a term of the sum in which

the p; factor does not appear. Thus, the product P,c is not divisible by

2™ —1. Consequently, the period of a sequence Y at the output of

o-generator is equal to
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(2™ —1)xlem(28 -1, ..., 2 1),
@If L =..=L,=L, thenhy =...=h, =1 and o = n(2F7). So,
the divisibility of o by 2™ —1 is equivalent to the divisibility of n by
2™ _1 because ged(2F7!, 2™ —1) =1. Therefore, we have per(Y) =

rx (2L - 1).
Now, let us study the linear complexity of an a-generator over ]Fzm'

It is not unreasonable to continue to talk of linear complexity of an

o-generator over IFZm, although its combination function uses

exponentiation in the multiplicative group F;m , which is far from being a

linear function. Since it is periodic and that any periodic sequence is
considered linear recurring, it would be interesting to get an idea of its
linear complexity. To this purpose, we conducted experiments whose

results are given in Tables 1, 2, and 3. Since, a-generators over IFQm
have very great period, we considered those who consist of LFSR of small
length L;. To conduct these simulation examples of linear complexity
(LC), we choose m € {3, 4, 5, 6,7, 8} and L; € {2, 3, 4, 5, 6}. We denoted
per and LCM, respectively, the period of an o-generator and the least

common multiple of LFSRs periods component it. Based on these
experiences, we formulate the following result we could not give a

theoretical demonstration for now.

Theorem 5. Let L, ..., L, be the lengths of n LFSRs of an

o-generator over ]Fzm' Let 'Y be an output sequence from this

o-generator. The linear complexity LC of Y satisfies

lem(2l -1, ..., 2" —1) < LC < mxlem(2Dr -1, ..., 257 —1) 4+ 1.
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Table 1.
(L1, Lg)

Basis
field (3, 4) (3, 5) (3, 6)

LCM | per LC LCM | per LC LCM | per LC
IF23 105 735 315 | 217 1519 631 63 441 190
15‘24 105 1575 420 217 3255 840 63 315 158
F5 105 3255 526 | 217 6727 1086 63 1953 | 316
15‘26 105 6615 631 217 13671 | 1302 63 1323 | 378
Fy7 105 13335 | 735 | 217 27559 | 1520 63 8001 | 441
[F28 105 26775 | 841 217 55335 | 1736 63 5355 | 126

19

Comparison of complexity between generators: Table 4 provides a

comparison of periods and linear complexities of a-generator over ]F2m,

generators by combining boolean function and summation generators,

using n maximal LFSRs with lengths L;, Lo, ..

1cm(2L1 ~1,.., 20 _ 1) and LC is the linear complexity.

4.2. Statistical tests

.

and L, , where LCM =

In order to test pseudo-random property of sequences generated by

a-generators, we have taken an example of a-generators using LFSRs

whose characteristics are:
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Table 2.
(L1, Lg)
Basis
feld (4,5) (4,6)
LCM | per LC LCM | Per LC
]14‘23 465 3255 1350 315 | 2205 946
]F24 465 6975 1801 315 1575 787
]14‘25 465 14415 2325 315 | 9765 1575
]F26 465 29295 2791 315 6615 1891
]14‘27 465 59055 3256 315 | 40005 | 2206
]F28 465 118575 | 3721 315 26775 | 2521
Table 3.
(L1, Ly, L3)
Basis
field 2,35 (2, 3,6)
LCM per LC LCM per LC

IF23 651 4557 1891 63 441 189
IE‘24 651 9765 2520 63 189 94
IF25 651 20181 3255 63 1953 | 315
IE‘QG 651 39711 3907 63 3969 | 379
[F27 651 82677 4557 63 8001 | 441
IE‘28 651 166005 | 5209 63 3213 | 505
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Table 4. Comparison of period and complexity

Generator Period Linear complexity
Combining boolean function LCM LC <« LCM
Combining by summation LCM LC ~ LCM
o-generator Tx LCM with | LCM < LC < mxLCM +1
l<sr<2™-1

— LFSR1: length L; =11, feedback polynomial = XU x84 Xx5+Xx% 41,
— LFSR2: length Ly =13, feedback polynomial = XB X%+ X7+ X% 41,
—LFSR3: length Lg =17, feedback polynomial = X7 + X2 + X% 4 X* +1,

— LFSR4: length L, =19, feedback polynomial = X% + X3 + X9 4 X* +1.

In order to construct these generators, we have the following
combination of LFSRs over ]F2m for m < 16, 32: (LFSR1, LFSR2, LFSR3,

and LFSR4).

The statistical tests of these a-generators were performed by using
the NIST Test Suite [9]. For each selected generator, we sampled 100
sequences of size 105 For each statistical test, a set of p-values
(corresponding to the set of sequences) is produced. If p-value > 0.01, the

tested sequence is considered to be random. For each statistical test, the
proportion of sequences that pass the test is computed. The expected

proportion of sequences that pass a test is equal to 96 /100. The results

of these tests, given in Table 5, show that generators produce sequences
of very good quality statistics.
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Table 5. NIST statistical tests

(LFSR1, LFSR2, LFSR3, LFSR4)

On ]1*‘216 On IE‘2 32
Test Proportion Proportion
Frequency 99/100 99/100
Block Frequency 100/100 100/100
Cumulative Sums 100/100 98/100
Cumulative Sums 99/100 100/100
Runs 100/100 99/100
Longest Run 98/100 98/100
Rank 100/100 98/100
FFT 98/100 100/100
Maurer 100/100 99/100
Approximate Entropy 95/100 96/100
Serial 100/100 100/100
Serial 98/100 100/100
Linear Complexity 100/100 100/100

4.3. Security analysis of o-generators

For our security analysis, only the initialization of the generator is
not known, all other parameters of the system are known. An attack is
aimed at recovering the initial state of a generator from several output
terms read after the end of the initialization phase. These attacks
attempt to exploit either the algebraic structure of the generator or its
statistical quality. First, we try to exploit the structure of our generator
to provide a security argument. Then, we focus on algebraic attacks and
correlation attacks.
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An argument of security

In this part, we examine the possibility to find a breach of security

through the exponentiation method used by our generator.

Consider the expression of an output sequence Y from an

a-generator over IE‘zm. We have

for any >0, y; =lIsh(p; ® 1),

where B; = Bi,laxl’ﬁmm”’i. This expression of B; can be written as
= o%a¥, with 2z €{0,1,...,2" -2} and x;, =x;;+--+x,; €
14 14 2 1,1 n,i
0,1, -, n} (the sum is performed in Z), i.e., x; is the integer sum of
1

the i-th output of LFSR. Thus, B; = o', with ¢; = x; + z; € {0, 1, ---, 2™
+n — 2}. Therefore, the calculation of B; consists in calculating powers of

o, where successive exponents ¢; are not ordered.

Since we cannot predict the state of a LFSR at a clock cycle
(one iteration) without knowing at least one of its preceding states, its

output becomes unpredictable. Thus, it is the same for the sequence (x; ).
Therefore, we cannot predict the exponents ¢;. As a result, it is

impossible to predict the sequences B and c (¢ being related to B).

Since Y is a function of the sequences B and ¢, and thus with the

argument above, it is impossible to predict a term of the output sequence

of the a-generator, by trying to exploit the fact that o -generator uses

the exponentiation in the group F,.

Algebraic attacks

Assume that we have k bits yq, ..., y,_1 produced by an o -generator

over IFZm from a given initialization.
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Denote by (xy;, ..., %, ;) the n-tuple representing the i-th output
from n LFSRs. We denote the function that takes xy ;, ..., x, ;, B;_; and

c;_1 to give the i-th output y; from the o -generator by ®. Then, we

must try to form the following system:

Y; :(x)(xl’i,...,xn’i,ﬁi_l,ci_l), OSiSk—l,

where the unknowns are the bits of the initializations of all the n LFSRs

and those of the initial memory (bits f_; and c_;).

The ability to form and solve this system depends on the function o.
An improved variant of this basis algebraic attack can be found in [2].

According to the relation (3), we have
y; = lsb(Bi,locxl’ﬁerx"’i ®yi1) for 0<i<k-1.

So, there are (m — 2) unknown elements a, ;, ..., @9 ; of Fy such that

B0 LTI @ il = o™l @ am_2’iocm_2 @@ ag’ioc2 ® ap ;0D y;.
This is equivalent to
Bi_laxl’ﬁm”"’i @Yl Dy @ am_zyiam_z @@ az’ioc2 ® ap ;0 = ;.
Letlefl,...,m—1} and p_; = ol.
So using the fact that Bi_laxl’ﬁm”"’i = QZEZO(xLﬁ“'ern,j)Jrl’ then

the above system becomes: For 0 < i < k-1,

¥i_ (q j+etxp )+ . B
o =0 T @y @y @ apy_g 0™ @ @ ag 0 @ ap o=y,

®)

We do not see how can we exploit the system (5) to find the bits of the
initial states of LFSRs and the bits of initial memory (c¢_; and B_;).
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Now, let us look if we can form a polynomial system using the fact

that a%, where a is a bit, can be written as aa @ @.
We can write B; ® 71 as

Zé'=0(x1,j+"'+xn,j )+l

Bi @yt =« @yt

=a (xy, j0 @ %, ;) ®ci 1y ®Cq. (6)

Considering relation (6), we see that if we try to form a system of
polynomial equations with unknowns, the bits of the initial states of the
n LFSRs and initial memory (bits of f_; and c_j), then the degree of the
t-th equation is #(n +1). It quickly becomes infeasible to obtain such
equations. Moreover, the complexity of techniques for solving nonlinear
systems increases exponentially with the degree of the equations. We
also see that, after the initial state of the generator, the degree of the bits
of the memory (m-bit memory and binary memory) expressed as function
of bits of the previous state is n +1. Because of this, the attack in [2]

may not apply.

Thus, we see that the output sequence Y from the a-generator has an

algebraic description more difficult to exploit. With these arguments, we

believe that the a-generator is resistant to algebraic attacks.

In addition, based on the observation that the degree of the ¢-th

output from the a-generator is ¢(n + 1) (so the degree quickly increases),

cubes attacks described in [3] by Itai Dinur and Adi Shamir are

impracticable against the a-generator.

Correlation attacks

The original correlation attack is due to Siegenthaler [12, 11]. He
brought against generators based on a combination of LFSR with a

nonlinear boolean function f (it applies to generators of a filtered LFSR).
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It consists to consider the correlation between the output of the function f
with n variables and ¢ fixed elements of its inputs with ¢ < n. If by fixing
these ¢ elements of the entries of f changes the distribution of the output
of f, then we can plan a correlation attack. However, if f remains
balanced, then there is no correlation of order ¢ (uncorrelated with

respect to its ¢ terms). Clearly, the aim is to find a linear function g of Fé

into Fy such that

Prob({(21, .., 2,) € B3 [ f(21, s 25) = 8(235 s §)}) > %

If this linear function exists, then we can consider conducting a
correlation attack by an exhaustive search on the ¢ fixed inputs. For a
large value of ¢, this attack becomes ineffective because the complexity of
the exhaustive search will be very large. Subsequently, a variation of this
attack, called fast correlation attack, is proposed by Meier and
Staffelbach [7]. This alternative approach uses decoding techniques

instead of exhaustive search, which reduces the complexity of the attack.

In this part, we will analyze the feasibility of conducting a correlation

attack on an a-generator over Fzm.

Let 6 and 9 be the exponential and summation function,

respectively, defined by
§:{0,1,...,2" +n-2} > F;‘m,

z - o,

9:{0,1}" x{0,1,...,2" -2} - {0, 1, ..., 2" + n - 2},
(%145 s Xp s Mj1) > X+ Xy F Ay

. X1 j+Xg j+ Xy g X1 jH+Xg jHt Xy A
The computation of B; = B;_jou ' > R Al L

with o’i-1 = B, ;, corresponds to calculate the image of the vector (%145

X9 i» X i, hj—1) by the composite function & o 9.



A NEW APPROACH TO COMBINE LFSRS ... 27

The function 9 1is nonlinear at the binary level and has the
additional property that fixing some of its inputs that does not change in
the distribution of its outputs. In fact, the function 9 is n-resilient and is
also an exponential function, then there is no linear relation between the
bits of the binary notation of B; = 8(8(xy ;, -, % ;, Aj—1)) and x;j ;,
where 1 < j < n. Furthermore, we notice that the result of the addition
of yi-1 =¢;_; ®y%1 to B; occurs in y;. Then y; became a linear
function of ¢;_; and the most significant bit of the binary representation

of B;. This cannot be used to perform an attack.

With the above arguments, we conclude that the a-generators resist

to correlation attacks.
5. Implementation Properties

In this section, we give implementation properties of o-generators.

An a-generator over Fzm based on n LFSRs use the multiplication

k , with 0 <k < n, in the polynomial basis. Therefore, we must

by «
build a circuit capable of multiplication by o in the polynomial basis. It

is well known that a Galois LFSR of length m can do this. So to perform a
multiplication by (xk, we must perform k cycles with this Galois LFSR.
Thus, the total gate count for different parts of the generator is
approximately the number of gates required to implement n +1 LFSR
(with an LFSR of length m).

6. Conclusion

In this paper, we introduced a new family of generators by combining
LFSRs, which we called the family of the a-generators. These generators

produce sequences of very large periods and rather high linear
complexity. They resist both to correlation and algebraic attacks.
Moreover, they can be implemented easily by using simple operations

such as “exclusive or” and “shift”.
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